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Abstract
Fragile X Syndrome is a genetic form of intellectual disability associated with au-
tism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout 
(KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations 
of synaptic plasticity, with exaggerated long- term depression induced by activation 
of metabotropic glutamate receptors (mGluR- LTD) in Fmr1 KO hippocampus. We 
have previously demonstrated that activation of serotonin 5- HT7 receptors reverses 
mGluR- LTD in the hippocampus of wild- type and Fmr1 KO mice, thus correct-
ing a synaptic dysfunction typically observed in this disease model. Here we show 
that pharmacological inhibition of cyclin- dependent kinase 5 (Cdk5, a signaling 
molecule recently shown to be a modulator of brain synaptic plasticity) enhanced 
mGluR- LTD in wild- type hippocampal neurons, which became comparable to exag-
gerated mGluR- LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition 
prevented 5- HT7 receptor- mediated reversal of mGluR- LTD both in wild- type and 
in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic 
plasticity. 5- HT7 receptors require Cdk5 to modulate synaptic plasticity in wild- type 
and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible 
novel target in Fragile X Syndrome.
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1 |  INTRODUCTION

Synaptic plasticity represents the cellular basis for activity- 
dependent establishment and refinement of nerve circuits 
underlying learning and memory. Among different forms of 
synaptic plasticity described in the hippocampus, long- term 
depression induced by activation of metabotropic glutamate 
receptors (mGluR- LTD) plays an important role in learn-
ing and behaviour (Luscher & Huber, 2010). Alterations of 
mGluR- LTD have been observed in several animal models of 
neurological diseases involving learning and behavioral defi-
cits, including Fragile X Syndrome (Luscher & Huber, 2010; 
Sanderson et al., 2016). Fragile X Syndrome is a genetic form 
of intellectual disability associated with autistic features, ep-
ilepsy and mood disorders (Salcedo- Arellano et al., 2020). In 
Fmr1 knockout (KO) mice, a murine model of this disease, 
metabotropic glutamate receptors (mGluRs) are abnormally 
coupled to their intracellular signaling machinery, leading to 
excessive activation of downstream pathways and exagger-
ated mGluR- LTD (Bear et al., 2004; Huber et al., 2002).

Our research group demonstrated that activation of sero-
tonin 5- HT7 receptors is able to reduce excessive mGluR- 
LTD in Fmr1 KO hippocampal neurons (Costa et al., 2012) 
and rescue learning and behavior in Fmr1 KO mice in vivo 
(Costa et al., 2018). We have elucidated the first steps of this 
5- HT7 receptor- mediated mechanism of action, which relies 
on cyclic adenosine monophosphate (cAMP) formation and 
PKA activation (Costa et al., 2018).

In the present work, we have investigated possible in-
volvement of Cyclin- dependent kinase 5 (Cdk5), a kinase 
implicated in 5- HT7 receptor- mediated stimulation of axo-
nal and dendritic growth in cortical, hippocampal and striatal 
neurons (Speranza et al., 2013, 2015, 2017). Cdk5 belongs to 
a large family of cyclin- dependent kinases, but differs from 
the other members in several ways: Cdk5 is not involved in 
the cell cycle, being mostly expressed in post- mitotic neu-
rons, and plays a crucial role in the brain controlling neuronal 
differentiation and migration during development, cyto-
skeletal and microtubule regulation and synaptic plasticity 
(Kawauchi, 2014; Shah & Rossie, 2018). Two specific Cdk5 
activators, the intracellular membrane- bound peptides p35 
and p39, have been identified and localized exclusively in 
neurons (Ko et al., 2001). In pathological conditions, p35 is 
cleaved by calpain (a Ca2+- activated protease) into a shorter 
activator peptide, p25, with a broad cytoplasmic and nuclear 
localization and a longer half- life, inducing hyperphosphor-
ylation of Cdk5 physiological substrates and abnormal phos-
phorylation of cytoplasmic and nuclear proteins (Allnutt 
et  al.,  2020; Cheung & Ip,  2012; Shah & Rossie,  2018). 
Aberrant p25/Cdk5 signalling accounts for neuronal damage 
in mouse models of Alzheimer's disease (Giese,  2014; Liu 
et al., 2016), Parkinson's disease (He et al., 2020) and trau-
matic brain injury (Yousuf et al., 2016). Cdk5 downregulation 

has been associated with epilepsy (Liu et  al.,  2020), atten-
tion deficit and hyperactivity disorder (Drerup et al., 2010) 
and schizophrenia (Engmann et  al.,  2011). In the striatum 
of postmortem Huntington's disease patients and in a mouse 
model of this pathology, reduced expression of Cdk5 and p35 
was observed (Luo et al., 2005; Paoletti et al., 2008) together 
with abnormal Cdk5 activation by p25 (Paoletti et al., 2008), 
indicating a complex dysregulation of Cdk5 signaling in 
Huntington's disease.

In the present work, we have tested a possible involvement 
of Cdk5 in 5- HT7 receptor- mediated reversal of mGluR- LTD 
in the hippocampus of wild- type mice and of the Fmr1 KO 
mouse model of Fragile X Syndrome.

2 |  METHODS

2.1 | Electrophysiology recordings

Experiments were performed using patch clamp recording in 
acute mouse hippocampal slices from wild- type and Fmr1 
KO mice on a C57BL/6J background, obtained from a breed-
ing colony at the University of Catania (Italy). Mice were 
maintained with a controlled temperature (21°C ± 1°C) and 
humidity (50%) on a 12 hr light/dark cycle, with ad libitum 
food and water. All animal experimentation was conducted 
in accordance with the European Community Council guide-
lines (2010/63/EU) and was approved by the University 
Institutional Animal Care and Use Committee (Project # 250 
–  approval number: 352/2016- PR).

Acute hippocampal slices were prepared as described 
previously (Costa et al., 2012) from wild- type and Fmr1 KO 
mice (postnatal PN age 14– 23 days). Briefly, the brains were 
removed, placed in oxygenated ice- cold artificial cerebro-
spinal fluid (ACSF; in mM NaCl 124; KCl 3.0; NaH2PO4 
1.2; MgSO4 1.2; CaCl2 2.0; NaHCO3 26; D- glucose 10, 
pH 7.3) and cut into 300 µm slices with a vibratome (Leica 
VT 1200S). Slices were continually perfused with oxygen-
ated ACSF and viewed with infrared microscopy (Leica 
DMLFS). Schaffer collaterals were stimulated with negative 
current pulses (duration 0.3 ms, delivered every 15 s by A310 
Accupulser, WPI, USA). Evoked excitatory post synaptic 
currents (EPSCs) were recorded under whole- cell from CA1 
pyramidal neurons (holding potential −70  mV; EPC7- plus 
amplifier HEKA, Germany). Stimulation intensity was set 
to induce half- maximal EPSC amplitude. Series resistance 
(Rs) was continuously monitored by 10 mV hyperpolarizing 
pulses; recordings were discarded from analysis if Rs changed 
by more than 20%. EPSC traces were filtered at 3 kHz and 
digitized at 10 kHz. Data were acquired and analysed using 
Signal software (CED, England). The recording micropipette 
(resistance 1.5– 3 MΩ) was filled with intracellular solution 
(in mM: K- gluconate 140; HEPES 10; NaCl 10; MgCl2 2; 
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EGTA 0.2; Mg- ATP 3.5; Na- GTP 1; pH 7.3). In a set of ex-
periments, the intracellular solution contained roscovitine, a 
selective Cdk5 inhibitor, at a concentration (1.6 µM) 10- fold 
higher than the reported IC50 value (0.16 µM) of roscovitine 
on Cdk5/p35 (Meijer et  al.,  1997). Bath solution (ACSF) 
was continuously changed at a flow rate of 1.5 ml/min and 
routinely contained (- )- bicuculline methiodide (5 µM, Hello 
Bio) and D- (- )- 2- amino- 5- phosphonopentanoic acid (D- 
AP5, 50 µM, Hello Bio) to isolate AMPA receptor- mediated 
EPSCs. S- 3,5- dihydroxyphenylglycine (DHPG, 100  µM; 

Hello Bio), and LP- 211 (10 nM) were dissolved in ACSF and 
applied by bath perfusion. LP- 211 was synthesized and pro-
vided by the research group of Prof. Leopoldo (University of 
Bari, Italy).

2.2 | Data analysis

To compare the amount of DHPG- induced LTD in different 
groups of neurons, EPSC amplitude values were normalized 

F I G U R E  1  Inhibition of Cdk5 enhanced mGluR- LTD in CA1 neurons from wild- type mice and prevented 5- HT7 receptor- mediated effect 
on mGluR- LTD. AMPA receptor- mediated excitatory post- synaptic currents (EPSCs) were recorded in the presence of D- AP5 (50 µM) and 
bicuculline (5 µM) under whole- cell patch clamp in the CA3- CA1 synapse in hippocampal slices from wild- type mice. (a) Bath application of the 
group I mGluR agonist DHPG (100 µM, 5 min) induced a long- term depression (mGluR- LTD) of EPSC amplitude (white dots, n = 11). When the 
Cdk5 inhibitor roscovitine (1.6 µM) was added to intracellular medium, DHPG- induced mGluR- LTD was enhanced (light grey dots, n = 7) with 
respect to control. (b) When DHPG application was followed by application of the 5- HT7 receptor agonist LP- 211 (10 nM, 5 min), mGluR- LTD 
was completely reversed (dark grey dots, n = 6). In the presence of intracellular roscovitine (1.6 µM), application of LP- 211 did not modify the 
amount of mGluR- LTD (black dots, n = 6). (c) The bar graph shows that the amount of mGluR- LTD measured 40 min after DHPG application 
(mean EPSC amplitude in all tested neurons, expressed as % of baseline EPSC amplitude; EPSC values of single neurons are displayed for each 
bar) in the four different experimental conditions (control; roscovitine; LP- 211; LP- 211 + roscovitine) was significantly different (p = 0.0006 by 
one- way ANOVA followed by Tukey's multiple comparisons test). *p < 0.05; ***p < 0.001



4 |   COSTA eT Al.

as follows: peak amplitude values of EPSCs were averaged 
over 1 min and expressed as % of baseline EPSC amplitude 
(calculated from EPSCs recorded during at least 15 min before 
DHPG application). Normalized % EPSC values from each 
group of neurons were pooled (mean ± SEM) and graphically 
represented as a function of time. The amount of mGluR- 
LTD was calculated 40 min after LTD induction by DHPG 
and was normalized as percentage of baseline (% EPSC 
amplitude; mean ± SEM from all tested neurons). Column 

graphs indicate normalized % EPSC amplitude (mean ± SEM 
from groups of neurons) 40 min after application of DHPG 
alone or DHPG with the 5- HT7 receptor agonist LP- 211 
under different experimental conditions. Single values from 
each recorded neuron are illustrated for each column. EPSC 
amplitude values from two groups of neurons were compared 
using unpaired Student's t test, with n indicating the number 
of neurons tested in each condition. Groups of data from four 
different experimental conditions (Figure 1c and Figure 2c) 

F I G U R E  2  Inhibition of Cdk5 did not modify mGluR- LTD in CA1 neurons from Fmr1 KO mice and prevented 5- HT7 receptor- mediated 
effect on mGluR- LTD. AMPA receptor- mediated excitatory post- synaptic currents (EPSCs) were recorded from CA1 neurons in the presence of D- 
AP5 (50 µM) and bicuculline (5 µM) in hippocampal slices from Fmr1 KO mice. (a) Bath application of DHPG (100 µM, 5 min) induced mGluR- 
LTD (white dots; n = 8). In the presence of intracellular roscovitine (1.6 µM) the amount of mGluR- LTD was not modified (grey dots, n = 6) with 
respect to control conditions. (b) Application of LP- 211 (10 nM, 5 min) completely reversed mGluR- LTD in control conditions (dark grey dots, 
n = 8) but had no effect on mGluR- LTD in the presence of intracellular roscovitine (black dots, n = 7). (c) The bar graph shows the amount of 
mGluR- LTD measured 40 min after DHPG application (mean EPSC amplitude in all tested neurons, expressed as % of baseline EPSC amplitude; 
EPSC values of single neurons are displayed for each bar). The amount of mGluR- LTD in the four experimental conditions (control; roscovitine; 
LP- 211; LP- 211 + roscovitine) was significantly different (*p = 0.0331 by one- way ordinary ANOVA followed by Tukey's multiple comparisons 
test)
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were compared by one- way ANOVA followed by Tukey's 
multiple comparisons test (GraphPad Prism 6, USA)

3 |  RESULTS

Excitatory post synaptic currents (EPSCs) mediated by 
α- Amino- 3- hydroxy- 5- methyl- 4- isoxazolepropionic acid 
(AMPA) receptors for glutamate were evoked every 15 s by 
stimulation of Schaffer collaterals and were recorded from 
single CA1 pyramidal neurons under whole- cell patch clamp. 
In wild- type hippocampal slices, application of DHPG 
(100  µM, 5  min), an agonist of group I metabotropic glu-
tamate receptors (mGluRs), induced a long- term depression 
(mGluR- LTD) of AMPA receptor- mediated EPSCs (EPSC 
amplitude 40  min after DHPG: 79  ±  10% with respect to 
baseline EPSC amplitude prior to DHPG application, n = 11; 
Figure 1a). In a series of experiments, the Cdk5 inhibitor ro-
scovitine (1.6 µM) was included in the intracellular pipette 
solution, thus was present since the beginning of recording: 
in this condition the amount of DHPG- induced mGluR- LTD 
was significantly enhanced with respect to control conditions 
(EPSC amplitude: 51 ± 9%, n = 7, versus 79 ± 10%, n = 11, 
wild- type DHPG + roscovitine versus wild- type DHPG, 
p = 0.04, t = 1.821, df = 16; unpaired t test; Figure 1a and c).

We have previously demonstrated that activation of 5- HT7 
receptors reverses mGluR- LTD in wild- type and in Fmr1 
KO hippocampal neurons (Costa et  al., 2012, 2015, 2018). 
Confirming our previous data, application of the selective 
5- HT7 receptor agonist LP- 211 (10 nM, 5 min) 5 min after 
DHPG application significantly reversed mGluR- LTD (EPSC 
amplitude: 121 ± 1%, n = 6, versus 79 ± 10%, n = 11, wild- 
type DHPG + LP- 211 versus wild- type DHPG, p = 0.011, 
t = 2.513, df = 15; unpaired t test; Figure 1b and c).

In the presence of intracellular roscovitine, (1.6 μM) ap-
plication of LP- 211(10  nM, 5  min) was unable to reverse 
mGluR- LTD in wild- type slices (EPSC amplitude: 51 ± 9%, 
n = 7, versus 49 ± 9%, n = 6; wild- type DHPG + roscovitine 
versus wild- type DHPG + roscovitine + LP- 211, p = 0.42, 
t  =  0.1895, df  =  11, Figure  1b and c). LP- 211 reversed 
mGluR- LTD in control conditions but not in the presence 
of roscovitine (EPSC amplitude: 121  ±  1%, n  =  6, versus 
49  ±  9%, n  =  6, wild- type DHPG +LP- 211 versus wild- 
type DHPG + LP- 211 + roscovitine, p = 0.0003, t = 4.912, 
df = 10; unpaired t test; Figure 1b and c). Ordinary one- way 
ANOVA followed by Tukey's multiple comparisons test was 
performed to compare the amount of mGluR- LTD in the four 
different conditions (control; roscovitine; LP- 211; LP- 211 + 
roscovitine, Figure 1c), confirming a highly significant dif-
ference (***p = 0.0006).

In Fmr1 KO slices, application of DHPG (100 µM, 5 min) 
induced mGluR- LTD in control conditions and in the pres-
ence of intracellular roscovitine (1.6  µM) and the amount 

of mGluR- LTD was similar in the two conditions (EPSC 
amplitude: 53 ± 10%, n = 8 versus 50 ± 3%, n = 6; Fmr1 
KO DHPG versus Fmr1 KO DHPG + roscovitine; p = 0.39, 
t = 0.2670, df = 12; Figure 2a and c). When comparing data 
obtained in the presence of intracellular roscovitine, the 
amount of mGluR- LTD in wild- type was not significantly 
different from Fmr1 KO (EPSC amplitude 51 ± 9%, n = 7 
versus 50 ± 3%, n = 6; wild- type DHPG + roscovitine versus 
Fmr1 KO DHPG + roscovitine; p = 0.78, t = 0.2817, df = 11; 
compare the grey dots columns in Figure 1c and Figure 2c).

In Fmr1 KO neurons, application of LP- 211 (10  nM, 
5 min) significantly reversed mGluR- LTD in control condi-
tions (EPSC amplitude: 53 ± 10%, n = 8, versus 93 ± 14%, 
n = 8, Fmr1 KO DHPG versus Fmr1 KO DHPG + LP- 211, 
p = 0.0219, t = 2.216, df = 14; unpaired t test; Figure 2b and 
c) but had no effect in the presence of roscovitine, (EPSC 
amplitude: 51 ± 12%, n = 7, versus 50 ± 3, n = 6; Fmr1 KO 
DHPG + roscovitine + LP- 211 versus Fmr1 KO DHPG + 
roscovitine; p = 0.47, t = 0.07344, df = 11; Figure 2b and 
c). With intracellular roscovitine, the effect of LP- 211 on 
mGluR- LTD was significantly reduced with respect to con-
trol (EPSC amplitude: 93 ± 14%, n = 8, versus 51 ± 12%, 
n = 7, Fmr1 KO DHPG + LP- 211 versus Fmr1 KO DHPG 
+ LP- 211 + roscovitine, p = 0.0286, t = 2.087, df = 13; un-
paired t test; Figure 2b and c). The amount of mGluR- LTD 
in the four different experimental conditions (control; rosco-
vitine; LP- 211; LP- 211 + roscovitine, Figure 2c) was signifi-
cantly different (*p = 0.031, one- way ANOVA followed by 
Tukey's multiple comparisons test). LP- 211- mediated rever-
sal of mGluR- LTD was completely abolished by roscovitine 
in wild- type and in Fmr1 KO to a comparable extent (EPSC 
amplitude: 49 ± 9%, n = 6, versus 51 ± 12%, n = 7, wild- type 
DHPG + LP- 211 + roscovitine versus Fmr1 KO DHPG + 
LP- 211 + roscovitine, p = 0.896, t = 0.1336, df = 11; un-
paired t test; compare Figures 1c and 2c).

These results together show that Cdk5 inhibition pre-
vented 5- HT7 receptor- mediated reversal of mGluR- LTD 
both in wild- type and in Fmr1 KO neurons.

4 |  DISCUSSION

Our data show that Cdk5 inhibition in wild- type hippocampal 
CA1 neurons enhanced mGluR- LTD to a level comparable 
to Fmr1 KO neurons. This result differs from control con-
ditions, in which the amount of mGluR- LTD in wild- type 
neurons is significantly lower than that observed in Fmr1 
KO neurons (Choi et  al.,  2011; Costa et  al.,  2012; Gomis- 
Gonzalez et al., 2016; Huber et al., 2002; Zhang et al., 2009). 
Enhancement of mGluR- LTD in wild- type neurons follow-
ing Cdk5 inhibition suggests that, in physiological condi-
tions, Cdk5 exerts a negative control on mGluR- LTD. Our 
results also suggest that either the expression or the function 
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of Cdk5 in Fmr1 KO neurons might be reduced compared 
to wild- type and that reduced Cdk5 function might account 
for enhanced mGluR- LTD. In accordance with our hypoth-
esis, a recent study shows a reduced expression of Cdk5 in 
the hippocampus of Fmr1 KO mice (Zhang et al., 2020). In 
future studies, it might be interesting to measure the activa-
tion level of Cdk5 and of its physiological activators p35 and 
p39 in neurons from Fmr1 KO mice and, possibly, in human 
neurons derived from Fragile X Syndrome patients using in-
duced pluripotent stem cell (iPSC) differentiation strategies.

We further show that activation of 5- HT7 receptors was 
unable to reverse mGluR- LTD in both wild- type and Fmr1 
KO neurons following Cdk5 inhibition, showing that 5- HT7 
receptors recruit Cdk5 to modulate mGluR- LTD.

Roscovitine has a similar affinity for Cdc2 (also known as 
Cdk1), Cdk2, Cdk5 and Cdk7, with reported IC50 values of 
0.65, 0.7, 0.16 and 0.45 µM respectively (Meijer et al., 1997; 
Schang et  al.,  2002). However, published data suggest that 
in our experimental conditions roscovitine acted primarily 
on Cdk5. Indeed, Cdc2 and Cdk2 play a key role in the cell 
cycle and are expressed exclusively by dividing cells during 
embryonic development: their maximal expression in mouse 
forebrain was found between embryonic day 1 and 11 (E1- 
E11), was barely detectable by E16- 17 and remained very 
low throughout adult life. Conversely, an opposite pattern of 
expression and activity was described for Cdk5, which is ex-
pressed in mouse forebrain and hippocampus exclusively in 
post- mitotic neurons, with a growing level of expression from 
embryonic to adult ages (Tsai et  al.,  1993). Another study 
showed a weak expression of Cdk1 and Cdk2 in mouse hip-
pocampal pyramidal neurons, but at PN 11 (very close to the 
age of mice used in our study) they were detected at low lev-
els only in the nucleus and not in the cytoplasm; cytoplasmic 
expression of Cdk1 and Cdk2 in hippocampal neurons was 
found only in adults (9 months PN) (Schmetsdorf et al., 2005). 
Very little information is presently available about Cdk7 ex-
pression in the brain. In mouse cortical neurons, Cdk7 levels 
were very low before PN 30 (He et al., 2017). In the pres-
ent work, we have studied fully differentiated (non- dividing) 
mouse hippocampal pyramidal neurons at a post natal age 
(PN 14– 23) when Cdk5 is highly expressed whereas Cdk1, 
Cdk2 and Cdk7 expression levels are very low. Therefore, we 
believe that in our experimental conditions roscovitine acted 
primarily through Cdk5 inhibition.

In our experiments, roscovitine was included in the intra-
cellular pipette solution, thus Cdk5 inhibition was exclusively 
exerted in the CA1 neuron under recording, indicating a post- 
synaptic role of Cdk5 in 5- HT7 receptor- mediated effect.

In the last decade, interesting publications have indicated a 
connection between 5- HT7 receptors and Cdk5, showing that 
5- HT7 receptors require Cdk5 to stimulate axonal elongation 
and dendrite formation in cultured neurons from rodent brain 
cortex, hippocampus and striatum (Speranza et  al.,  2013, 

2015, 2017). The intracellular pathway linking 5- HT7 recep-
tors to Cdk5 activation remains to be clarified. A plausible 
link might be the cAMP pathway, since increases in cAMP 
levels were shown to stimulate p35 expression and Cdk5 ac-
tivity in rat cultured neurons (He et al., 2016). 5- HT7 receptors 
are coupled to Gs protein, stimulating adenylate cyclase and 
cAMP formation (Wirth et al., 2017), thus we might speculate 
that 5- HT7 receptor- induced cAMP increase might stimulate 
the p35/Cdk5 pathway in hippocampal neurons. This issue is 
particularly relevant to Fragile X Syndrome, since reduced 
levels of cAMP were measured in blood platelets of Fragile X 
patients (Berry- Kravis & Huttenlocher, 1992; Berry- Kravis 
& Sklena, 1993) and the cAMP signaling cascade is altered at 
different levels in neurons from Fmr1 KO mice, originating 
a “cAMP hypothesis” of the disease (Kelley et al., 2008). In 
the brain of Fmr1 KO mice, overexpression and increased 
activity of phosphodiesterase 2A (PDE2A), a cAMP degrad-
ing enzyme, leads to reduced cAMP formation and dysregu-
lation of cAMP downstream signaling (Maurin et al., 2018, 
2019). As above mentioned, cAMP can stimulate p35/Cdk5 
expression and function in rodent neurons (He et al., 2016); 
thus reduced cAMP levels in mouse Fmr1 KO hippocampal 
neurons might be related to the reduced Cdk5 expression re-
cently described (Zhang et al., 2020).

Besides a possible involvement of cAMP, 5- HT7 receptors 
might activate Cdk5 through additional mechanisms. A just- 
published paper shows that 5- HT7 receptors are physically 
linked to Cdk5 and stimulate Cdk5 activity in a G protein- 
independent mode. Of note, using several in vitro and in vivo 
approaches, the same work shows that abnormally high con-
stitutive activity of 5- HT7 receptors caused Tau hyperphos-
phorylation, formation of Tau aggregates, neuronal damage, 
impaired synaptic plasticity and learning deficits that were 
rescued by knocking down 5- HT7 receptor expression, sug-
gesting that inhibition of 5- HT7 receptor- mediated Cdk5 
activity might be used as a therapy for tauopathies (Labus 
et al., 2021).

Many therapeutic strategies for a potential treatment of 
Alzheimer's disease and Parkinson's disease aim to reduce ex-
cessive Cdk5 activity, focusing on Cdk5 inhibitors (Cheung 
& Ip,  2012; Gong & Iqbal,  2008). Our present results, to-
gether with the work of Zhang et al. (Zhang et  al.,  2020), 
indicate that in Fmr1 KO neurons Cdk5 activity is instead 
abnormally low, suggesting that activation of Cdk5 might be 
beneficial in Fragile X Syndrome.

Pharmacological activators of Cdk5 are not available at 
present. The intracellular membrane- bound kinases p35 and 
p39 are physiological Cdk5 activators; only few upstream 
extracellular messengers are currently known to activate 
p35 and Cdk5, namely BDNF (Cheung et al., 2007), dopa-
mine through D1 receptors (Lebel et  al.,  2009), and sero-
tonin through 5- HT7 receptors (Speranza et al., 2013, 2015, 
2017). We suggest that selective 5- HT7 receptor agonists can 
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be used to stimulate Cdk5 activity and might become useful 
pharmacological tools for Fragile X Syndrome. In addition, 
we suggest that the effects of 5- HT7 receptor agonists might 
be studied in other conditions associated with reduced Cdk5 
expression and function.
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